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The procedures described herein provide a facile method for the synthesis of pyrazolo[3,4-b]pyridine and
pyrazolo[1,5-a]pyrimidine by reacting N-substituted or unsubstituted-pyrazol-5(4H)-one, aryl-oxoketen-
e dithioacetals and alkyl amide. The products were obtained in moderate to good yield. The effects of the
solvents and substitution have also been described.
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1. Introduction

The functionalized pyrazolo[3,4-b]pyridine and pyrazolo[1,5-
a]pyrimidine are attractive compounds for drug discovery since
many of these scaffolds exhibit excellent biological activities. For
example, pyrazolo[3,4-b]pyridine derivatives have been evaluated
for various biological applications ranging from being good vasodi-
lators to hypotensive, anti-inflammatory, analgesics and antipy-
retic agents.1 The pyrazolo[1,5-a] pyrimidines structural motif is
found in a large number of pharmaceutical agents which exhibit
diverse range of physiological activities such as antiepileptic
agents,2 anxiolytics3 anti depressants4 and as agents for treatment
of sleep disorders5 and oncolytics.6 Therefore the development of
simple methodologies for the synthesis of these highly functional-
ized derivatives is highly challenging in organic synthesis.

To address this challenge, the development of multi-component
reaction method for the synthesis of these derivatives is of great
interest owing to its high efficiency and selectivity. Although there
are a wide range of methods available for the synthesis of pyrazol-
o[1,5-a] pyrimidines7 and pyrazolo [3,4-b] pyridines,8 very few of
these procedures provide a simple method that could yield com-
pounds with more structural diversities. In this Letter, we report
a successful multi-component procedure for the synthesis of
ll rights reserved.

: +91 3642228213.
1,4,5,6 tetrasubstituted pyrazolo[3,4-b] pyridine and a semi-
conventional method for the synthesis of 5,6,7 trisubstituted
pyrazolo[1,5-a] pyrimidines. The principal advantages, scope and
limitations of the method are discussed.

The general method to prepare (1,4,6 tri-substituted-1H-pyraz-
olo[3,4-b]pyridi-6-yl) (aryl) methanone 4a–j involves a three-com-
ponent reaction between 1-substituted-1H-pyrazone-5(4H)-one 1,
substituted aryl-oxoketene dithioacetals 2 and alkyl amides 3 in
presence of KF-alumina.9 The reaction presumably involves Mi-
chael addition and condensation to yield the desired products.
These reactions were attempted in range of solvents such as
DMA, acetonitrile, DMF, THF and 1,4 dioxane. However, the desired
products were obtained in DCM under refluxing conditions. The
reactions studied took between 8 and 16 h for completion (Scheme
1). The reaction time increases when the steric demand of the reac-
tant 1 increases (Table 1).
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Scheme 1. Synthesis of (1,4,6 tri-substituted-1H-pyrazolo[3,4-b]pyridi-6-yl) (aryl)
methanone.



Table 1
Substituted fused pyridine and pyrimidines.

Entry Product (4a–j) Product (6a–j) Product (9a–j) Yields (%)

a R1 = CH3 R1 = CH3 R1 = C6H5 4a = 80
R2 = C6H5 R2 = C6H5 R2 = CH3 6a = 83
R3 = CH3 R3 = CH3 9a = 78

b R1 = C2H5 R1 = C2H5 R1 = p-Cl–C6H5 4b = 82
R2 = C6H5 R2 = C6H5 R2 = CH3 6b = 80
R3 = CH3 R3 = CH3 9b = 82

c R1= R1= R1 = p-NO2–C6H5 4c = 81

R2 = C6H5 R2 = C6H5 R2 = CH3 6c = 73
R3 = CH3 R3 = CH3 9c = 88

d R1=
CN

R1=
CN R1 = p-Br–C6H5 4d = 83

R2 = C6H5 R2 = C6H5 R2 = CH3 6d = 75
R3 = CH3 R3 = CH3 9d = 85

e R1=
N

R1=
N

R1 = C6H5 4e = 80

R2 = C6H5 R2 = C6H5 R2 = C2H5 6e = 77
R3 = CH3 R3 = CH3 9e = 79

f R1 = CH3 R1 = CH3 R1 = p-Cl–C6H5 4f = 81

R2= Br R2= Br R2 = C2H5 6f = 73

R3 = C2Hs R3 = C2H5 9f = 81

g R1= R1 = C2H5 R1 = p-NO2–C6H5 4g = 79

R2= Br R2= Br R2 = C2H5 6g = 77

R3 = CH3 R3 = C2H5 9g = 81

h R1=
CN

R1= R1 = p-Br–C6H5 4h = 78

R2= Br R2= Br R2 = C2H5 6h = 67

R3 = CH3 R3 = C2H5 9h = 83

i R1=
N R1=

CN 4i = 80

R2= Br R2= Br 6i = 79

R3 = C2H5 R3 = C2H5

j R1 = CH3 R1=
N

4j = 85

R2 = C6H5 R2= Br 6j = 73

R3 = C2H5 R3 = C2H5
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Scheme 3. Synthesis of 1,4,5,6 tetra-substituted pyrazolo[3,4-b]pyridine.
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Scheme 2. Plausible mechanism for the synthesis (1,4,6 tri-substituted-1H-pyraz-
olo[3,4-b]pyridi-6-yl) (aryl) methanone.
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Scheme 4. Synthesis of 5,7,6 trisubstituted pyrazolo[1,5-a] pyrimidines.

N
H

N
O

O

R1

SMeMeS

+

7 2

N
H

N
O

O

R1

SMeMeS

7

2 N

O

R2

O

R1

SMeMeS
5

R3

Scheme

3090 P. Mizar, B. Myrboh / Tetrahedron Letters 50 (2009) 3088–3091
A plausible mechanism for the formation of 4a–j is outlined
in Scheme 2. The reaction was initiated by Michael addition
reaction between 1 and 2 to give the intermediate A which fur-
ther condensed with 3 by abstraction of a-proton to give the
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desired products. This may be concluded from the fact that
when condensation of 1-methyl-pyrazol-5(4H)-one and 3,3-
bis(methylthio)-1-phenylprop-2-en-1-one was carried out, 1-
methyl-4-((Z)-1-(methylthio)-3-oxo-3-phenylprop-1-enyl)-pyra-
zol-5(4H)-one was isolated which on further treatment with
acetamide afforded the desired product 4a, thereby indicating
that Michael addition is the first step in the three-component
reaction.

In order to study whether a similar type of reaction oc-
curred if the a-proton of the aryl oxoketene dithioacetals was
unavailable, we carried out a three-component reaction of 1,
a-substituted aryl oxoketene dithioacetals 5 and acetamide in
presence of KF-alumina.10 Interestingly it was observed that
the product obtained was 1,4,5,6 tetra-substituted pyrazolo[3,4
-b]pyridine 6a–j (Scheme 3). The plausible mechanism for the
formation of 6a–j is outlined in Scheme 4. The reaction was
initiated by the Michael addition reaction between 1 and 5 to
give 1,5 dicarbonyl B which further underwent condensation
with acetamide to yield the desired products. The reaction pre-
sumably involves a Michael addition reaction to give 1,5 dicar-
bonyl which further underwent condensation with acetamide to
yield 6a–j (Table 1). The reactions were found to be solvent
dependent and proceded only in CHCl3 under refluxing condi-
tion. The reactions studied took between 12 and 24 h for
completion.

It was further observed that the three-component reaction
between 1H-pyrrol-2(3H)-one 7, aryl oxoketene dithioacetal
and acetamide yielded a complex mixture of products. However,
when 7 was refluxed with 2 in toluene an addition product 8
was obtained, which when further refluxed with 3 in CCl4

yielded 5,7,6 trisubstituted pyrazolo[1,5-a] pyrimidines 9a–h11

(Scheme 5).
In conclusion, we have developed efficient procedures for the

synthesis of biologically active scaffolds by using a three-compo-
nent KF-alumina-catalysed reaction.
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